If a statistic is resistant, it means that the presence of outliers or extreme values in the data set does not have a significant impact on the value of the statistic. In other words, a resistant statistic is not heavily influenced by extreme values, and therefore provides a more accurate and reliable representation of the data as a whole.
Resistant statistics are often preferred in data analysis because they offer a more robust measure of central tendency or dispersion in the presence of outliers. Common examples of resistant statistics include the median (as opposed to the mean), the interquartile range (as opposed to the standard deviation), and the mode.
Overall, using resistant statistics can help prevent the distortion of results and provide a more accurate understanding of the data, especially when dealing with datasets that may contain outliers or extreme values.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page