In statistics, a resistant statistic is one that is not unduly affected by outliers or extreme values in a dataset. In other words, its value does not change drastically when a small proportion of data points are very different from the rest of the data. Resistant statistics provide a more stable and reliable measure of the central tendency or spread of data, especially when the dataset may contain errors or non-representative observations.
Here's a breakdown of what "resistant" means in this context:
<a href="https://www.wikiwhat.page/kavramlar/Outliers">Outliers</a>: These are data points that lie significantly far away from the other data points in a dataset. They can heavily influence certain statistics.
<a href="https://www.wikiwhat.page/kavramlar/Influence%20of%20Outliers">Influence of Outliers</a>: A resistant statistic is designed to minimize the influence of outliers on its calculated value.
Examples of Resistant Statistics:
Examples of Non-Resistant Statistics:
Why Resistance Matters: Resistance is especially important when analyzing real-world data, which often contains errors, unusual observations, or data that do not perfectly fit the expected distribution. Using resistant statistics helps ensure that the results are not misleading due to these anomalies.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page